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Abstract:  The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium 

problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and 

efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium 

problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, 

a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic 

charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the 

most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising 

nature-inspired optimization method to perform applied thermodynamic calculations for process design. 
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I. INTRODUCTION 

Applied thermodynamic calculations in chemical engineering 

often involve the repeated solution of phase stability and 

phase equilibrium problems as their solutions are needed 

during the design of several equipment and separation 

processes. These problems can be formulated as minimization 

problems, for which the global minimum represents the 

required result. These calculations are challenging due to the 

high nonlinearity of thermo dynamic models used to describe 

the equilibrium phases, the potential non-convexity of the 

thermodynamic functions used as objective, and the presence 

of trivial solutions in the feasible search space. Thus, the 

solution of this type of problems via global optimization 

algorithms remains to be an active area of research. These 

problems generally feature local minima that are comparable 

to the global minimum, which accentuates the need for 

reliable global optimizers [1, 2]. For example, the features of 

reactive phase equilibrium calculations increase the 

dimensionality and complexity of the optimization problem 

because the objective functions are required to satisfy the 

chemical equilibrium constraints [1, 2]. The global stochastic 

optimization methods show high probabilities to locate the 

global minimum within reasonable computational costs, and 

thus they offer a desirable balance between reliability and 

efficiency for finding the global optimum solution. Moreover, 

stochastic methods do not require any assumptions for the 

optimization problem at hand, are more capable of addressing 

the nonlinearity and non-convexity of the objective function, 

and are relatively easier to program and implement, among 

other advantages [3]. The application of stochastic global 

optimization methods for solving phase equilibrium 

thermodynamic problems has grown considerably during last 

year’s. 

To date, the most popular stochastic global optimization 

methods have been used and applied for solving phase 

equilibrium thermodynamic problems, for example, 

simulated annealing, genetic algorithms, tabu search, 

differential evolution, particle swarm optimization, and ant 

colony optimization (ACO) [4– 15]. For example, a variant of 

ACO was tested in the global optimization of thermodynamic 

problems and was found to be robust in solving vapor-liquid 

equilibrium parameter estimation problems [4]. Zhu et al. [5] 

used an enhanced simulated annealing algorithm to solve 

multi component phase stability problems. Bonilla-Petriciolet 

and his coworkers compared different variants of PSO [6] and 
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different variants of simulated annealing [14] for solving 

phase equilibrium problems. Repulsive particle swarm 

optimization was also studied by Rahman et al. [8]. 

Rangaiah and his co-workers studied the differential 

evolution [9, 10], tabu search [11], and genetic algorithms 

[12] for solving phase stability and phase equilibrium 

problems. The above studies have analyzed the capabilities 

and limitations of stochastic optimizers. But there exists no 

conclusive evaluation of those methods in comparison to one 

another for the solution of phase stability and phase 

equilibrium problems. Typically, each algorithm is introduced 

and compared with some of the other algorithms in a research 

publication. However, to the best of our knowledge, there 

exists no study that presents to the scientific community a 

ranking of the efficiency and reliability of those algorithms 

for the purpose of solving phase equilibrium and stability 

problems. The aim of this study is provide a definitive ranking 

of the performance of a set of nature-inspired metaheuristic 

algorithms. To do so, we have selected eight of the most 

promising nature-inspired optimization methods based on the 

performance reported in the literature or obtained from our 

previous studies. These algorithms are cuckoo search (CS), 

intelligent firefly (IFA), bat (BA), artificial bee colony 

(ABC), monkey and krill herd hybrid (MAKHA), covariance 

matrix adaptation evolution strategy (CMAES), magnetic 

charged system search (MCSS), and bare bones particle 

swarm optimization (BBPSO). We systematically used those 

methods on some of the difficult phase stability and phase 

equilibrium problems reported in the literature and then 

analyzed their performance in terms of clear reliability and 

efficiency metrics. The remainder of this paper is organized 

as follows. The eight optimization methods and the rationale 

for their selection are briefly presented in Section 2. A brief 

description of the phase stability and equilibrium problems is 

given in Section 3, including the implementation details of the 

eight algorithms. Section 4 presents the results and discussion 

of their performance in solving these thermodynamic 

calculations. Finally, the conclusions of this study are 

summarized in Section 5. 

II. SELECTION AND DESCRIPTION OF THE NATURE 

INSPIRED METAHEURISTIC ALGORITHMS 

Each of the eight selected Metaheuristic is presented below. 

Only brief introductions are made here. Interested readers are 

referred to the primary sources of those algorithms for more 

information. Cuckoo search (CS) is an optimization algorithm 

inspired by the obligate brood parasitism of some cuckoo 

species by laying their eggs in the nests of other host birds 

[16]. Intelligent firefly algorithm (IFA) [17] is a variant of 

firefly algorithm [18], a metaheuristic algorithm, inspired by 

the flashing behavior of fireflies to attract other fireflies. 

MAKHA is a hybrid between monkey algorithm (MA) [19], 

which is inspired by the simulation of the climbing processes 

of monkeys to find the highest mountaintop, and krill-herd 

algorithm (KHA) [20], which is based on the simulation of the 

herding behavior of krill individuals. Covariance matrix 

adaptation evolution strategy (CMAES) [21] is a stochastic 

and derivative free method for numerical optimization of 

nonlinear non-convex problems. Artificial bee colony (ABC) 

[22] is an optimization algorithm based on the intelligent 

foraging behavior of honey bee swarm. Bat algorithm (BA) 

[23] is another bio inspired optimization algorithm based on 

the echolocation behavior of micro bats with varying pulse 

rates of emission and loudness. Magnetic charged system 

search (MCSS) [24] is a variant of charged system search 

[25], which is based on the application of physics principles 

such as Coulomb law and Newtonian laws of mechanics to 

model how charged particles affect one another during their 

move towards the largest bodies. 

In MCSS, magnetic forces are also considered in addition to 

electrical forces. Finally, a variant of bare bones particle 

swarm optimization (BBPSO) [26] is based on the original 

particle swarm optimization [27], but without parameters and 

with the incorporation of mutation and crossover operators of 

DE to enhance the global search capability. Since it was not 

possible to include all global stochastic optimization methods 

available in the literature for this comparative study, a 

screening process was performed to select the most promising 

ones. This process depended mainly on the results of solving 

phase stability and phase equilibrium problems using global 

optimization methods as reported in the literature. In several 

publications, limited comparisons were reported between 

some GSO methods. For example, CMAES was selected as it 

was shown to perform better than shuffled complex evolution 

in solving phase equilibrium and phase stability problems 

[28]; IFA performed better than FA in general [17], CS better 

than integrated differential evolution [29], MCSS better than 

CSS for phase equilibrium and phase stability problems [30], 

and BBPSO better than PSO [26]. In addition, our preliminary 
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calculations showed that MAKHA performed better than MA 

and KHA, and ABC and BA performed better than FA. One 

approach to solving phase stability and phase equilibrium 

problems is to start the optimization process with a stochastic 

global optimizer, as the methods studied in this work. Once a 

certain stopping criterion is satisfied, we follow with a local 

optimizer, such as sequential quadratic programming, to close 

down to the minimum within the vicinity of the best value 

found by the global optimizer. This approach has been proven 

successful in previous studies [28– 30] and it would 

complement any of the methods studied above. However, we 

restricted this study to the performance of the stochastic 

global optimizers without the use of a local optimizer to focus 

on the strength and weakness of the studied methods free from 

any artificial enhancement of their results. 

III. DESCRIPTION OF PHASE STABILITY AND PHASE 

EQUILIBRIUM PROBLEMS USED FOR THE EVALUATION 

In this study, the phase stability and equilibrium problems are 

stated as a global optimization problem. Therefore, the global 

optimization problem to be solved is as follows: minimize (X) 

with respect to decision variables: X = (1. . .). The upper and 

lower bounds of these variables are (1max, max) and (1min... 

min), respectively. The phase stability, phase equilibrium, and 

reactive phase equilibrium calculations for testing the 

performance of global optimization methods are explained 

briefly in Table 1, which shows the problem formulation, 

objective function, decision variables, and constraints used 

for those thermodynamic calculations. Specifically, the phase 

stability analysis was performed using the global 

minimization of the tangent plane distance function (TPDF) 

[31], while the global optimization of the Gibbs free energy 

was used for phase equilibrium calculations with or without 

chemical reactions [2]. The mathematical formulation for 

phase stability and phase equilibrium calculations for 

nonreactive systems is an unconstrained minimization of the 

objective function, while the constrained Gibbs free energy 

minimization in reactive systems was performed using the 

penalty function method according to the approach reported 

by Bonilla-Petriciolet et al. [1]. For interested readers, several 

references provide a detailed description of these 

thermodynamic calculations [1, 2, 4, 10, and 12]. Previous 

work reported the evaluation of global optimization methods 

for solving twenty-four problems [4, 28, and 30]. In this work, 

we focused on the nine most difficult ones. The basis for the 

selection was the relatively lower success rates that 

optimization methods obtained when solving them in the 

previous studies. These problems are presented in Table 2. 

IV. DETAILS OF NUMERICAL IMPLEMENTATION AND 

PERFORMANCE METRICS USED FOR TESTING THE 

ALGORITHMS 

All thermodynamic problems and the different optimization 

algorithms were coded in the MATLAB technical computing 

environment. The codes for CS and BA were obtained from 

MATLAB file exchange server as uploaded by their 

developers and used without change. The code for IFA was 

developed by the authors through min or modifications of the 

FA code that was obtained from the MATLAB file exchange 

server as well. The codes for CMAES and ABC were obtained 

from the developer’s web sites and used without change. The 

code for MCSS was written by the authors based on the 

developer’s published work [24, 25]. MAKHA was 

developed and coded by the authors. The code for BBPSO 

was obtained from its developer [26]. Each problem was 

solved 30 times independently and with different random 

initial seeds to determine the reliability of the optimization 

algorithms. Calculations were performed for a certain number 

of iterations and then stopped. This maximum value for the 

number of iterations was different for different algorithms. 

The maximum values were selected to give the same number 

of function evaluations at the end of the run. Table 3 shows 

the values selected for the parameters of the eight 

optimization algorithms, which were determined using 

preliminary calculations. 

The methods were evaluated according to the reliability and 

efficiency for finding the global optimum. The efficiency is 

determined by recording the number of function evaluations 

NFE for each optimization algorithm, where a low value of 

NFE means a higher efficiency. Note that NFE is an unbiased 

indicator of the computational costs required by a certain 

algorithm and is independent of the host hardware. In 

previous studies [1, 4, 6, 26, 28, 30], reliability was measured 

by the success rate at certain number of iterations. The success 

rate is defined as the ratio of number of runs in which the 

global minimum was attained within a tolerance at this 

iteration number to the total number of runs. In this work, we 

present a different reliability metric: a plot of the average best 
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value against the number of function evaluations. The best 

values are averaged over all the runs and plotted against NFE, 

which is calculated at each iteration. Since the NFE needed 

for each iteration differs amongst the optimization methods, 

the plot of average best value against NFE is a better 

indication of reliability versus efficiency of the optimization 

method. For a comparative evaluation of the global 

optimization methods, we have employed performance 

profile (PP) reported by Dolan and More [32], who introduced 

PP as a tool for evaluating and comparing the performance of 

optimization software. In particular, PP has been proposed to 

represent compactly and comprehensively the data collected 

from a set of solvers for a specified performance metric such 

as the computing time or the number of function evaluations. 

The PP plot allows visualization of the expected performance 

differences among several solvers and comparing the quality 

of their solutions by eliminating the bias of failures obtained 

in a small number of problems. Consider solvers (i.e., 

optimization methods) to be tested over a set of problems. For 

each problem and solver, the performance metric must be 

defined. In our study, reliability of the stochastic method in 

accurately finding the global minimum of the objective 

function is considered as the principal goal, and hence the 

reliability performance metric is defined as 

       =  calc –  *,                                                          (1) 

Where * is the known global optimum of the 

Objective function and calc is the mean value of that objective 

function calculated by the Metaheuristic Over several runs. 

We have also used another performance metric for the 

evaluation of the efficiency of the method in obtaining the 

global minimum. This metric is the minimum number of NFE 

needed to reach with 10−5 of the global minimum. For the 

performance metric of interest, the performance ratio is used 

to compare the performance on problem by solver with the 

best performance by any solver on this problem. This 

performance ratio is given by 

=   /min {   : 1 ≤   ≤   }. (2) 

It is a non-decreasing, piecewise constant function, 

continuous from the right at each of the breakpoints [32]. To 

identify the best solver, it is only necessary to compare the 

values of ps(£) for all solvers and to select the highest one, 

which is the probability that a specific solver will “win” over 

the rest of solvers used. In our case, one PP plot compares 

how accurately the stochastic methods can find the global 

optimum value relative. 

Table.3. Selected values of the parameters used in the 

implementation of the eight nature-inspired metaheuristic  

 

algorithms. 

The value of rps is 1 for the solver that performs the best on a 

specific problem p. To obtain an overall assessment of the 

performance of solvers on np problems, the following 

cumulative function for rps is used:  

 

Ps (£) = 1 / np Size {P : rps < £}, (3) 

Where ps (£) is the fraction of the total number of problems, 

for which solver s has a performance ratio rps within a factor 

of £of the best possible ratio. The PP of a solver is a plot of ps 

(£) versus £; 

 

 
Figure.1. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem T7. 
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Figure. 2. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem T8. 

 

to one another, and so the term “win” refers to the stochastic 

method that provides the most accurate value of the global 

minimum in the benchmark problems used. The other PP plot 

compares how fast the stochastic methods can find the global 

minimum with a tolerance level of 10−5, so the term “win”, in 

this case, refers to the method that reaches the solution fastest 

for the problems used. 

V. RESULTS AND DISCUSSION 

The results are presented in three different ways. For each 

problem, the mean best values are plotted versus NFE for each 

of the eight algorithms. These plots are found in Figures 1–9. 

The minimum NFE required to reach a certain tolerance from 

the known global minimum for each problem was calculated 

and presented in Table 4. The performance profiles for the 

reliability and efficiency metrics are shown in Figures 10 and 

11, respectively. A detailed discussion of the results follows. 

 

 
Figure.3. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem T9 

 

 
Figure.4. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem G4. 

 

 

 
 

Figure.5. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem G6. 

 

 

 
Figure.6. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem G7. 
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Figure.7. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem G8 

 

 
 

Figure.8. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem RG4. 

 

 
 

Figure.9. The evolution of the mean best value calculated via the 

eight Meta heuristics versus NFE for problem RG7. 

 

 
 

Figure.10. Performance profile (PP) of the reliability metric of the 

eight Meta heuristics for the 9 phase stability and equilibrium 

problems. 

VI.  PHASE STABILITY PROBLEMS 

Problem T7 is a nine-variable phase-stability problem that is 

extremely difficult to solve. The means of the minimum 

values obtained by all methods were not close enough to the 

global minimum except for CS. As shown in Figure 1 and 

Table 4, ABC and MCSS were able to get to within 10−3 of 

the global minimum. On the other hand, CS was able to find 

the global minimum down to a tolerance of 10−7. To reach 

the global minimum within a tolerance of 10−5, it required 

109280 function evaluations. Problem T8 is also a difficult 

phase stability problem. Figure 2 shows how all problems 

were able to reach values close to the global optimum. 

However, close analysis at the vicinity of the global 

minimum, as depicted in the inset of Figure 2, at the level of 

10−5, revealed that MAKHA and BA failed to find the global 

minimum up to the end of the runs. CMAES was the most 

efficient as it converged to the global minimum in the least 

NFE by at least one order of magnitude. None of the methods 

was able to reach within 10−6 of the global minimum, as 

shown in Table 4. Problem T9 is the last of the three phase 

stability problems. Even though, MAKHA was quite fast in 

approaching the global minimum, as depicted in Figure 3, it 

failed at converging to within 10−5 of the global minimum 
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Figure.11. Performance profile (PP) of the efficiency metric of the 

eight Meta heuristics for the 9 phase stability and equilibrium 

problems. 

IFA was also not able to find the global minimum. CMAES 

was the most efficient method in getting down to 10−5 

distance from the global minimum but was not able to get any 

closer. CS, again, was the only method to converge reliably 

down to 10−7 of the global minimum. For the phase stability 

problems, CS is clearly the most reliable method. It may not 

be as efficient in its initial approach to the global minimum 

as other methods such as BA or CMAES, but it outperforms 

the rest in terms of finding the global minimum. An open area 

of development for CS would be to make it more efficient via 

hybridization with some of the other methods in their initial 

approach to the global minimum. 

A. Phase Equilibrium Problems 

Problem G4 is a two variable phase equilibrium problem that 

is relatively easy to solve. However, CMAES seemed to have 

been trapped in a local minimum and was unable to find its 

global minimum, within a tolerance of 10−5, as shown in 

Figure 4. IFA did slightly better than CMAES, but was unable 

to reach the global minimum within a tolerance of 10−6. 

MAKHA was the most efficient in finding the global 

minimum within 10−6 and 10−7, with BBPSO and CS 

performing quite well. Despite the fact that CMAES was not 

able to solve problem G4, it was superior in solving problem 

G6. With only NFE, CMAES reached down to 10−6 of the 

global minimum, as is shown in Figure 5. All methods 

converged to 10−6 from the global minimum, but only 

CMAES, CS, and MCSS converged to 10−7, with CMAES 

being ten times more efficient. This convergence pattern was 

repeated in problem G7. Only CMAES and CS solved the 

problem down to the 10−6 and 10−7 levels, with CMAES 

being one order of magnitude more efficient, as is clear in 

Figure 6 and Table 4. MAKHA, BA, and BBPSO were not 

able to converge at the 10−5 level. Problem G8 was 

successfully solved at the 10−5 level by IFA, CMAES, ABC, 

BA, CS, and BBPSO, as shown in Figure 7. Only CMAES 

and CS solved the problem down to the 10−7 levels, with 

CMAES being one order of magnitude more efficient. In fact, 

CMAES was quite efficient at all tolerance levels, as shown 

by the NFE numbers in Table 4. The convergence profiles of 

the four phase equilibrium problems (G4, G6, G7, and G8) 

indicated that CS is the most reliable of all algorithms as it 

was the only one to be able to solve all problems down to the 

10−7 tolerance level. CMAES was the most efficient as it 

required one order of magnitude less NFE to solve three of 

the four problems down to the same tolerance level. However, 

CMAES failed to solve the two-variable problem that was 

successfully solved by all other methods, except IFA, down 

to the 10−7 level. 

B. Reactive Phase Equilibrium Problems 

Regardless of the number of variables, the reactive phase 

equilibrium problems are more difficult than the nonreactive 

phase equilibrium problems because the chemical reaction 

equilibria constraints must be satisfied. Problem R4, see 

Figure 8, was successfully solved down to the 10−5 tolerance 

level by CS, which was also able to converge to the global 

minimum at the 10−6 and 10−7 levels. MAKHA, CMAES, 

BA, MCSS, and BBPSO were not able to arrive even at a level 

of 10−3 from the global minimum. Similarly, CMAES and 

BA were not able to reach the 10−3 level for Problem R7. 

However, MAKHA, IFA, CS, and BBPSO converged down 

to 10−7 distance from the global minimum, with IFA being 

the most efficient down to the 10−5 level and BBPSO at the 

10−6 and 10−7 levels. The complete failure of CMAES to 

solve reactive phase equilibrium problems is remarkable. 

CMAES functions extremely well in certain types of 

problems and extremely bad in others. On the other hand, CS 

solved the reactive phase equilibrium problems just as it 

reliably solved all other problems in this study. Since CS uses 

Levy walk, instead of random walk, in its global search, it can 

explore the search space more efficiently and avoid 

entrapment in local minima, as was demonstrated by our 

results. However, CS requires significantly large NFE to 

allow it to converge to the global minimum. Any attempt to 

improve CS performance should target its slow convergence 

behavior. Our results are summarized in the PP plots of 

Figures 9 and 10. The reliability ranking, as extracted from 

the reliability PP plot of Figure 9, is as follows. CS is the most 



 

 

International Journal of Progressive Research in Science and Engineering 

Volume-1, Issue-5, August-2020 

www.ijprse.com 
 

 

101 

 

reliable, followed by CMAES, BBPSO, and MCSS, on the 

second level. The third level contains MAKHA, ABC, IFA, 

and BA, in that order. The efficiency ranking starts with 

CMAES, BBPSO, and ABC. The second level contains CS 

and IFA. The third level contains BA, MAKHA, and MCSS.  

VII. CONCLUSION 

In this study, we have selected eight promising nature 

inspired Meta heuristic algorithms for the solution of nine 

difficult phase stability and phase equilibrium problems. 

These thermodynamic problems were systematically solved 

by the different meta heuristics and the results were tracked 

and compared. The results clearly show that CS is the most 

reliable of all tested optimization methods as it successfully 

solved all problems down to the 10−5 tolerance from the 

global minima. Any attempt to improve the performance of 

CS should target its slow convergence behavior. Recently 

developed CS variants [33] could provide more efficient 

performance for the solution of phase stability and phase 

equilibrium problems. These variants could be evaluated in a 

future study in an attempt to find the most reliable and 

efficient algorithm for this application. On the other hand, 

CMAES was the most efficient in finding the solution for the 

problems it was able to solve. However, it was not able to 

converge to the global minimum for some of the tested 

thermodynamic problems. 
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